Resit exam Linear Algebra II Friday 28/06/2024, 15:00-17:00

 $1 \quad (9 = 2 + 2 + 4 + 1 \text{ pts})$

Subspaces, bases and linear transformations

Let $\mathcal V$ be the $\mathbb R$ -vector space of all continuously differentiable functions $f:\mathbb R\to\mathbb R$. Here, addition of functions $f,g\in\mathcal V$ is defined as (f+g)(x)=f(x)+g(x) for all $x\in\mathbb R$, while scalar multiplication is defined as (af)(x)=af(x) for $a\in\mathbb R$ and $f\in\mathcal V$. Let $c_1,c_2,\ldots,c_n\in\mathbb R$ be distinct nonzero numbers. In this exercise we will consider the set

$$S := \{ a_1 e^{c_1 x} + a_2 e^{c_2 x} + \dots + a_n e^{c_n x} \mid a_1, a_2, \dots, a_n \in \mathbb{R} \}.$$

(a) Show that S is a subspace of V.

(b) Define $T_{\alpha}: \mathcal{S} \to \mathcal{S}$ by

$$T_{\alpha}(f) = f' - \alpha f$$

where $\alpha \in \mathbb{R}$. Show that T_{α} is a linear transformation

(c) Now, suppose that $b_1, b_2, \dots, b_n \in \mathbb{R}$ are such that

$$b_1 e^{c_1 x} + b_2 e^{c_2 x} + \dots + b_n e^{c_n x} = 0.$$
(1)

Prove that $b_1 = b_2 = \cdots = b_n = 0$. Hint: Use mathematical induction on n. For the induction step, apply T_{c_n} to both sides of (1).

(d) Is $\{e^{c_1x}, e^{c_2x}, \dots, e^{c_nx}\}$ a basis of S? Motivate your answer.

2 (9 = 1 + 2 + 3 + 3 pts)

dimension theorem, matrix representation

Denote by \mathcal{P} the \mathbb{R} -vector space of all polynomials in the variable x, with real coefficients. Define the \mathbb{R} -linear transformation $T \colon \mathcal{P} \to \mathcal{P}$ by $T(f) = x \cdot f - \frac{df}{dx}$. For any $n \geq 0$, let \mathcal{P}_n be the \mathbb{R} -subspace of \mathcal{P} consisting of the polynomials f of degree $\leq n$, and let \mathcal{Q}_n be the \mathbb{R} -subspace consisting of all $f \in \mathcal{P}_n$ such that f(0) = 0.

- (a) Show that T is injective.
- (b) The *n*-th Hermite polynomial $H_n(x)$ is defined as $H_n(x) = T^n(1)$.
 - (i) Compute $H_1(x)$ and $H_4(x)$.
 - (ii) Show that $H_{n+1}(x) = xH_n(x) H'_n(x)$.
- (c) Determine (with proof!) dim $T(Q_n)$.
- (d) For suitable bases of Q_2 and of \mathcal{P}_3 , construct the matrix of T considered as a map from Q_2 to \mathcal{P}_3 .

